Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709681

RESUMO

Cuticular wax is a protective layer on the aerial surfaces of land plants. In Arabidopsis (Arabidopsis thaliana), cuticular wax is mainly constituted of compounds derived from very-long-chain fatty acids (VLCFAs) with chain lengths longer than C28. CER2-LIKE (ECERIFERUM2-LIKE) proteins interact with CER6/KCS6 (ECERIFERUM6/ß-Ketoacyl-CoA Synthase6), the key enzyme of the fatty acid elongase complex, to modify its substrate specificity for VLCFA elongation past C28. However, the molecular regulatory mechanism of CER2-LIKE proteins remains unclear. Arabidopsis eceriferum19 (cer19) mutants display wax-deficient stems caused by loss of waxes longer than C28, indicating that CER19 may participate in the CER2-LIKE-mediated VLCFA elongation past C28. Using positional cloning and genetic complementation, we showed that CER19 encodes Acetyl-CoA Carboxylase1 (ACC1), which catalyzes the synthesis of malonyl-CoA, the essential substrate for the CER6/KCS6-mediated condensation reaction in VLCFA synthesis. We demonstrated that ACC1 physically interacts with CER2-LIKE proteins via split-ubiquitin yeast two-hybrid (SUY2H) and firefly luciferase complementation imaging (LCI) analysis. Additionally, heterologous expression in yeast and genetic analysis in Arabidopsis revealed that ACC1 affects CER2 activity to influence VLCFA elongation past C28. These findings imply that CER2-LIKE proteins might function as a link between ACC1 and CER6/KCS6 and subsequently enhance CER6/KCS6 binding to malonyl-CoA for further utilization in VLCFA elongation past C28. This information deepens our understanding of the complex mechanism of cuticular wax biosynthesis.

2.
New Phytol ; 242(5): 2251-2269, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38501480

RESUMO

The plant cuticle is a hydrophobic barrier, which seals the epidermal surface of most aboveground organs. While the cuticle biosynthesis of angiosperms has been intensively studied, knowledge about its existence and composition in nonvascular plants is scarce. Here, we identified and characterized homologs of Arabidopsis thaliana fatty acyl-CoA reductase (FAR) ECERIFERUM 4 (AtCER4) and bifunctional wax ester synthase/acyl-CoA:diacylglycerol acyltransferase 1 (AtWSD1) in the liverwort Marchantia polymorpha (MpFAR2 and MpWSD1) and the moss Physcomitrium patens (PpFAR2A, PpFAR2B, and PpWSD1). Although bryophyte harbor similar compound classes as described for angiosperm cuticles, their biosynthesis may not be fully conserved between the bryophytes M. polymorpha and P. patens or between these bryophytes and angiosperms. While PpFAR2A and PpFAR2B contribute to the production of primary alcohols in P. patens, loss of MpFAR2 function does not affect the wax profile of M. polymorpha. By contrast, MpWSD1 acts as the major wax ester-producing enzyme in M. polymorpha, whereas mutations of PpWSD1 do not affect the wax ester levels of P. patens. Our results suggest that the biosynthetic enzymes involved in primary alcohol and wax ester formation in land plants have either evolved multiple times independently or undergone pronounced radiation followed by the formation of lineage-specific toolkits.


Assuntos
Ceras , Ceras/metabolismo , Álcoois/metabolismo , Filogenia , Marchantia/genética , Marchantia/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Bryopsida/genética , Bryopsida/metabolismo , Briófitas/genética , Briófitas/metabolismo , Aldeído Oxirredutases/metabolismo , Aldeído Oxirredutases/genética , Vias Biossintéticas/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Aciltransferases/metabolismo , Aciltransferases/genética , Evolução Biológica , Arabidopsis/genética , Arabidopsis/metabolismo , Mutação/genética
3.
Plant Cell Physiol ; 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37927069

RESUMO

Wounding caused by insects or abiotic factors such as wind and hail can cause severe stress for plants. Intrigued by the observation that wounding induces expression of genes involved in surface wax synthesis in a jasmonoyl-isoleucine (JA-Ile)-independent manner, the role of wax biosynthesis and respective genes upon wounding was investigated. Wax, a lipid-based barrier, protects plants both from environmental threats as well as from an uncontrolled loss of water. Its biosynthesis is described to be regulated by abscisic acid (ABA), whereas the main wound-signal is the hormone JA-Ile. We show in this study, that genes coding for enzymes of surface wax synthesis are induced upon wounding in Arabidopsis thaliana leaves in a JA-Ile-independent but ABA-dependent manner. Furthermore, the ABA-dependent transcription factor MYB96 is a key regulator of wax biosynthesis upon wounding. On the metabolite level, wound-induced wax accumulation is strongly reduced in JA-Ile-deficient plants, but this induction is only slightly decreased in ABA-reduced plants. To further analyze the ABA-dependent wound response, we conducted wounding experiments in high humidity. They show that high humidity prevents the wound-induced wax accumulation in A. thaliana leaves. Together the data presented in this study show that wound-induced wax accumulation is JA-Ile-dependent on the metabolite level, but the expression of genes coding for enzymes of wax synthesis is regulated by ABA.

4.
Front Plant Sci ; 12: 752309, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34764971

RESUMO

The outer epidermal cell walls of plant shoots are covered with a cuticle, a continuous lipid structure that provides protection from desiccation, UV light, pathogens, and insects. The cuticle is mostly composed of cutin and cuticular wax. Cuticular wax synthesis is synchronized with surface area expansion during plant development and is associated with plant responses to biotic and abiotic stresses. Cuticular wax deposition is tightly regulated by well-established transcriptional and post-transcriptional regulatory mechanisms, as well as post-translationally via the ubiquitin-26S proteasome system (UPS). The UPS is highly conserved in eukaryotes and involves the covalent attachment of polyubiquitin chains to the target protein by an E3 ligase, followed by the degradation of the modified protein by the 26S proteasome. A large number of E3 ligases are encoded in the Arabidopsis genome, but only a few have been implicated in the regulation of cuticular wax deposition. In this study, we have conducted an E3 ligase reverse genetic screen and identified a novel RING-type E3 ubiquitin ligase, AtARRE, which negatively regulates wax biosynthesis in Arabidopsis. Arabidopsis plants overexpressing AtARRE exhibit glossy stems and siliques, reduced fertility and fusion between aerial organs. Wax load and wax compositional analyses of AtARRE overexpressors showed that the alkane-forming branch of the wax biosynthetic pathway is affected. Co-expression of AtARRE and candidate target proteins involved in alkane formation in both Nicotiana benthamiana and stable Arabidopsis transgenic lines demonstrated that AtARRE controls the levels of wax biosynthetic enzymes ECERIFERUM1 (CER1) and ECERIFERUM3 (CER3). CER1 has also been confirmed to be a ubiquitination substrate of the AtARRE E3 ligase by an in vivo ubiquitination assay using a reconstituted Escherichia coli system. The AtARRE gene is expressed throughout the plant, with the highest expression detected in fully expanded rosette leaves and oldest stem internodes. AtARRE gene expression can also be induced by exposure to pathogens. These findings reveal that wax biosynthesis in mature plant tissues and in response to pathogen infection is controlled post-translationally.

5.
Plant Cell Physiol ; 62(5): 827-838, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33749753

RESUMO

Cuticular waxes are derived from very-long-chain fatty acid (VLCFA) precursors made by the concerted action of four enzymes that form the fatty acid (FA) elongation complex. The condensing enzyme of the complex confers specificity to substrates of different chain lengths, yet on its own cannot account for the biosynthesis of VLCFAs longer than 28 carbons (C28). Recent evidence from Arabidopsis thaliana points to a synergistic role of clade II BAHD acyltransferases and condensing enzymes in the elongation of VLCFAs beyond C28. In Populus trichocarpa, clade II is composed of seven uncharacterized paralogous genes (PtCER2-like1-7). In the present study, five of these genes were heterologously expressed in yeast and their respective FA profiles were determined. PtCER2-likes differentially altered the accumulation of C28 and C30 FAs when expressed in the presence of the condensing enzyme AtCER6. Among these, PtCER2-like5 produced the highest levels of C28 FAs in yeast and its expression was localized to the epidermis in ß-glucuronidase-reporter poplar lines, consistent with a role in cuticular wax biosynthesis. Complementation of the A. thaliana cer2-5 mutant with PtCER2-like5 increased the levels of C28-derived cuticular waxes at the expense of C30-derived components. Together, these results demonstrate that the role of CER2-likes in cuticular wax biosynthesis is conserved in Populus clade II BAHD acyltransferases.


Assuntos
Aciltransferases/genética , Ácidos Graxos/biossíntese , Proteínas de Plantas/genética , Populus/metabolismo , Ceras/metabolismo , Aciltransferases/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácidos Graxos/química , Regulação da Expressão Gênica de Plantas , Filogenia , Componentes Aéreos da Planta/citologia , Componentes Aéreos da Planta/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Populus/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
6.
Plant Cell Physiol ; 61(12): 2126-2138, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33079186

RESUMO

Condensing enzymes catalyze the committed reaction of fatty acid elongation and determine the chain length of fatty acids accepted and produced by the elongation complex. While necessary for the elongation of very-long-chain fatty acids (VLCFAs), identified plant condensing enzymes cannot efficiently produce VLCFAs longer than 28 carbons, which are precursors for the most abundant cuticular waxes of most plant species that have been surveyed. The eceriferum2 (cer2) mutant of Arabidopsis thaliana has a severe wax-deficient phenotype and specifically lacks waxes longer than 28 carbons, but the CER2 protein does not share sequence similarity with condensing enzymes. Instead, CER2 is homologous to BAHD acyltransferases. Heterologous expression in yeast previously demonstrated that CER2, and a small clade of BAHD acyltransferases with high sequence identity to CER2, can extend the chain-length specificity of the condensing enzyme CER6. This biochemical function is distinct from that of the broader BAHD acyltransferase family. The product specificity and physiological functions of individual CER2-LIKE proteins are unique. Here, we demonstrate that CER2 physically interacts with the fatty acid elongase. We cloned chimeric CER2-LIKE proteins and expressed these in yeast cells to identify the features that define the substrate specificities of CER2-LIKEs. We generated homology-based structural models to compare CER2-LIKEs and BAHD acyltransferases. In addition, based on the current phylogenetic analysis of the CER2-LIKE clade, we describe two further Arabidopsis CER2-LIKE genes, CER2-LIKE3 and CER2-LIKE4. We used yeast expression and mutant analysis to characterize these genes. Collectively, these results expand our knowledge of the functions of CER2-LIKEs, the BAHD acyltransferase family and cuticular wax metabolism.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Ácidos Graxos/metabolismo , Genes de Plantas/genética , Genes de Plantas/fisiologia , Estrutura Terciária de Proteína
7.
Appl Plant Sci ; 8(4): e11332, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32351794

RESUMO

PREMISE: Seed oil is an economically important trait in Brassica oilseed crops. A novel method was developed to isolate Arabidopsis thaliana seeds with altered oil content. METHODS AND RESULTS: In A. thaliana, seed oil content is correlated with seed density, with high-oil seeds being less dense than wild type and tending to float in solution, and low-oil seeds being denser and tending to sink. In contrast to previous methods, which used toxic chemicals and density gradient centrifugation, different concentrations of calcium chloride (CaCl2) were employed to separate seeds without the need for centrifugation. The method was validated using known seed oil mutants, and 120,822 T-DNA mutagenized A. thaliana lines were then screened for novel seed density phenotypes. CONCLUSIONS: A number of candidate mutants, as well as new alleles of two genes known to influence seed oil biosynthesis, were successfully isolated.

8.
J Exp Bot ; 71(10): 3126-3141, 2020 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31985780

RESUMO

Drought events are a major challenge for many horticultural crops, including grapes, which are often cultivated in dry and warm climates. It is not understood how the cuticle contributes to the grape berry response to water deficit (WD); furthermore, the cuticular waxes and the related biosynthetic pathways are poorly characterized in this fruit. In this study, we identified candidate wax-related genes from the grapevine genome by phylogenetic and transcriptomic analyses. Developmental and stress response expression patterns of these candidates were characterized across pre-existing RNA sequencing data sets and confirmed a high responsiveness of the pathway to environmental stresses. We then characterized the developmental and WD-induced changes in berry cuticular wax composition, and quantified differences in berry transpiration. Cuticular aliphatic wax content was modulated during development and an increase was observed under WD, with wax esters being strongly up-regulated. These compositional changes were related to up-regulated candidate genes of the aliphatic wax biosynthetic pathway, including CER10, CER2, CER3, CER1, CER4, and WSD1. The effect of WD on berry transpiration was not significant. This study indicates that changes in cuticular wax amount and composition are part of the metabolic response of the grape berry to WD, but these changes do not reduce berry transpiration.


Assuntos
Vitis , Secas , Frutas/genética , Filogenia , Vitis/genética , Ceras
9.
Plant Cell Environ ; 43(3): 662-674, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31759335

RESUMO

Arabidopsis eceriferum (cer) mutants with unique alterations in their rosette leaf cuticular wax accumulation and composition established by gas chromatography have been investigated using attenuated total reflection (ATR)-Fourier transform infrared (FTIR) spectroscopy in combination with univariate and multivariate analysis. Objectives of this study were to evaluate the utility of ATR-FTIR for detection of chemical diversity in leaf cuticles, obtain spectral profiles of cer mutants in comparison with the wild type, and identify changes in leaf cuticles caused by drought stress. FTIR spectra revealed both genotype- and treatment-dependent differences in the chemical make-up of Arabidopsis leaf cuticles. Drought stress caused specific changes in the integrated area of the CH3 peak, asymmetrical and symmetrical CH2 peaks, ester carbonyl peak and the peak area ratio of ester CO to CH2 asymmetrical vibration. CH3 peak positively correlated with the total wax accumulation. Thus, ATR-FTIR spectroscopy is a valuable tool that can advance our understanding of the role of cuticle chemistry in plant response to drought and allow selection of superior drought-tolerant varieties from large genetic resources.


Assuntos
Arabidopsis/genética , Folhas de Planta/genética , Ceras/metabolismo , Arabidopsis/fisiologia , Cromatografia Gasosa , Secas , Genótipo , Umidade , Mutação/genética , Filogenia , Análise de Componente Principal , Solo/química , Espectroscopia de Infravermelho com Transformada de Fourier , Estresse Fisiológico
10.
Plant Physiol ; 181(3): 901-915, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31484679

RESUMO

Secretory trafficking is highly conserved in all eukaryotic cells and is required for secretion of proteins as well as extracellular matrix components. In plants, the export of cuticular waxes and various cell wall components relies on secretory trafficking, but the molecular mechanisms underlying their secretion are not well understood. In this study, we characterize the Arabidopsis (Arabidopsis thaliana) dwarf eceriferum11 (cer11) mutant and we show that it exhibits reduced stem cuticular wax deposition, aberrant seed coat mucilage extrusion, and delayed secondary cell wall columella formation, as well as a block in secretory GFP trafficking. Cloning of the CER11 gene revealed that it encodes a C-TERMINAL DOMAIN PHOSPHATASE-LIKE2 (CPL2) protein. Thus, secretory trafficking in plant cells in general, and secretion of extracellular matrix constituents in developing epidermal cells in particular, involves a dephosphorylation step catalyzed by CER11/CPL2.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Fenótipo , Epiderme Vegetal/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Transporte Proteico/genética , Transporte Proteico/fisiologia , Sementes/metabolismo , Ubiquitina-Proteína Ligases/genética , beta-Galactosidase/metabolismo
11.
Plant Cell Physiol ; 60(5): 1041-1054, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30715495

RESUMO

Long-chain acyl-CoA synthetases (LACSs) play diverse and essential roles in lipid metabolism. The genomes of model eukaryotic organisms encode multiple LACS genes, and the substrate specificities of LACS homologs often overlap substantially. Homologous LACSs tend to differ in their expression patterns, localizations, and, by extension, the metabolic pathways to which they contribute. The Arabidopsis genome encodes a family of nine LACS genes, which have been characterized largely by reverse genetic analysis of mutant phenotypes. Because of redundancy, distinguishing the contributions of some Arabidopsis LACS genes has been challenging. Here, we have attempted to clarify the functions of LACSs that functionally overlap by synopsizing the results of previous work, isolating a suite of higher-order mutants that were previously lacking, and analyzing oil, wax, cutin, cuticle permeability, fertility and growth phenotypes. LACS1, LACS2, LACS4, LACS8 and LACS9 all affect cuticular lipid metabolism, but have different precise roles. Seed set, seed weight and storage oil amounts of higher-order lacs1, lacs2, lacs4, lacs8 and lacs9 mutants vary greatly, with these traits subject to different effects of fertility and oil synthesis defects. LACS4, LACS8 and LACS9 have partially redundant roles in development, as lacs4 lacs8 and lacs4 lacs9 double mutants are dwarf. lacs4 lacs8 lacs9 triple mutants were not recovered, and are assumed to be non-viable. Together, these results sketch a complex network of functions and functional interactions within the Arabidopsis LACS gene family.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Coenzima A Ligases/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Coenzima A Ligases/genética , Regulação da Expressão Gênica de Plantas , Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/fisiologia , Óleos de Plantas/metabolismo , Sementes/genética , Sementes/metabolismo
12.
Plant Cell Physiol ; 59(4): 806-822, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29401261

RESUMO

The cuticle coats the primary aerial surfaces of land plants. It consists of cutin and waxes, which provide protection against desiccation, pathogens and herbivores. Acyl cuticular waxes are synthesized via elongase complexes that extend fatty acyl precursors up to 38 carbons for downstream modification pathways. The leaves of 21 barley eceriferum (cer) mutants appear to have less or no epicuticular wax crystals, making these mutants excellent tools for identifying elongase and modification pathway biosynthetic genes. Positional cloning of the gene mutated in cer-zh identified an elongase component, ß-ketoacyl-CoA synthase (CER-ZH/HvKCS1) that is one of 34 homologous KCSs encoded by the barley genome. The biochemical function of CER-ZH was deduced from wax and cutin analyses and by heterologous expression in yeast. Combined, these experiments revealed that CER-ZH/HvKCS1 has a substrate specificity for C16-C20, especially unsaturated, acyl chains, thus playing a major role in total acyl chain elongation for wax biosynthesis. The contribution of CER-ZH to water barrier properties of the cuticle and its influence on the germination of barley powdery mildew fungus were also assessed.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase/metabolismo , Ascomicetos/crescimento & desenvolvimento , Hordeum/enzimologia , Doenças das Plantas/microbiologia , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Ceras/metabolismo , Mapeamento Cromossômico , Sequência Conservada , Cristalografia por Raios X , Desidratação , Secas , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Estudos de Associação Genética , Hordeum/genética , Lipídeos de Membrana/metabolismo , Mutação/genética , Fenótipo , Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico/genética , Transcrição Gênica
13.
Plant Mol Biol ; 95(1-2): 33-50, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28730525

RESUMO

KEY MESSAGE: The Arabidopsis seed coat-specific promoter fragment described is an important tool for basic and applied research in Brassicaceae species. During differentiation, the epidermal cells of the Arabidopsis seed coat produce and secrete large quantities of mucilage. On hydration of mature seeds, this mucilage becomes easily accessible as it is extruded to form a tightly attached halo at the seed surface. Mucilage is composed mainly of pectin, and also contains the key cell wall components cellulose, hemicellulose, and proteins, making it a valuable model for studying numerous aspects of cell wall biology. Seed coat-specific promoters are an important tool that can be used to assess the effects of expressing biosynthetic enzymes and diverse cell wall-modifying proteins on mucilage structure and function. Additionally, they can be used for production of easily accessible recombinant proteins of commercial interest. The MUCILAGE-MODIFIED4 (MUM4) gene is expressed in a wide variety of plant tissues and is strongly up-regulated in the seed coat during mucilage synthesis, implying the presence of a seed coat-specific region in its promoter. Promoter deletion analysis facilitated isolation of a 308 base pair sequence (MUM4 0.3Pro ) that directs reporter gene expression in the seed coat cells of both Arabidopsis and Camelina sativa, and is regulated by the same transcription factor cascade as endogenous MUM4. Therefore, MUM4 0.3Pro is a promoter fragment that serves as a new tool for seed coat biology research.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Complexos Multienzimáticos/genética , Regiões Promotoras Genéticas , Sementes/genética , Regiões 5' não Traduzidas/genética , Proteínas de Arabidopsis/metabolismo , Simulação por Computador , Inativação Gênica , Genes Reporter , Teste de Complementação Genética , Glucuronidase/metabolismo , Íntrons/genética , Complexos Multienzimáticos/metabolismo , Fases de Leitura Aberta/genética , Reação em Cadeia da Polimerase em Tempo Real , Deleção de Sequência , Fatores de Transcrição/metabolismo
14.
Plants (Basel) ; 6(2)2017 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-28608803

RESUMO

The elongation of very-long-chain fatty acids is a conserved process used for the production of many metabolites, including plant cuticular waxes. The elongation of precursors of the most abundant cuticular wax components of some plants, however, is unique in requiring ECERIFERUM2-LIKE (CER2-LIKE) proteins. CER2-LIKEs are a clade within the BAHD superfamily of acyltransferases. They are known to be required for cuticular wax production in both Arabidopsis and maize based on mutant studies. Heterologous expression of Arabidopsis and rice CER2-LIKEs in Saccharomyces cerevisiae has demonstrated that they modify the chain-length specificity of elongation when paired with particular condensing enzymes. Despite sequence homology, CER2-LIKEs are distinct from the BAHD superfamily in that they do not appear to use acyl transfer activity to fulfill their biological function. Here, we review the discovery and characterization of CER2-LIKEs, propose several models to explain their function, and explore the importance of CER2-LIKE proteins for the evolution of plant cuticles.

15.
Plant J ; 90(5): 966-978, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28244172

RESUMO

Fatty acid biosynthesis is a primary metabolic pathway that occurs in plastids, whereas the formation of glycerolipid molecules for the majority of cellular membrane systems and the deposition of storage lipid in seeds takes place in the cytosolic compartment. In this report, we present a study of an Arabidopsis mutant, ar21, with a novel seed fatty acid phenotype showing higher contents of eicosanoic acid (20:1) and oleic acid (18:1) and a reduced level of α-linolenic acid (18:3). A combination of map-based cloning and whole-genome sequencing identified the genetic basis underlying the fatty acid phenotype as a lesion in the plant-specific eukaryotic translation initiation factor eIFiso4G1. Transcriptome analysis on developing seeds revealed a reduced level of plastid-encoded genes. Specifically, decreases in both transcript and protein levels of an enzyme involved in fatty acid biosynthesis, the ß-subunit of the plastidic heteromeric acetyl-CoA carboxylase (htACCase) encoded by accD, were evident in the mutant. Biochemical assays showed that the developing seeds of the mutant possessed a decreased htACCase activity in the plastid but an elevated activity of homomeric acetyl-CoA carboxylase (hmACCase). These results suggested that the increased 20:1 was attributable at least in part to the enhanced cytosolic hmACCase activity. We also detected a significant repression of FATTY ACID DESATURASE 3 (FAD3) during seed development, which correlated with a decreased 18:3 level in seed oil. Together, our study on a mutant of eIFiso4G1 uncovered multifaceted interactions between the cytosolic and plastidic compartments in seed lipid biosynthesis that impact major seed oil traits.


Assuntos
Proteínas de Arabidopsis/metabolismo , Fator de Iniciação Eucariótico 4G/metabolismo , Óleos de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Sementes/metabolismo , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fator de Iniciação Eucariótico 4G/genética , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Mutação , Plantas Geneticamente Modificadas/genética , Sementes/genética
16.
Mol Plant Pathol ; 18(2): 210-221, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-26950180

RESUMO

Ustilago maydis is an obligate biotrophic fungal pathogen which causes common smut disease of corn. To proliferate in host tissue, U. maydis must gain access to nutrients and overcome plant defence responses, such as the production of reactive oxygen species. The elucidation of the mechanisms by which U. maydis meets these challenges is critical for the development of strategies to combat smut disease. In this study, we focused on the contributions of phospholipases (PLs) to the pathogenesis of corn smut disease. We identified 11 genes encoding putative PLs and characterized the transcript levels for these genes in the fungus grown in culture and during infection of corn tissue. To assess the contributions of specific PLs, we focused on two genes, lip1 and lip2, which encode putative phospholipase A2 (PLA2 ) enzymes with similarity to platelet-activating factor acetylhydrolases. PLA2 enzymes are known to counteract oxidative damage to lipids in other organisms. Consistent with a role in the mitigation of oxidative damage, lip2 mutants were sensitive to oxidative stress provoked by hydrogen peroxide and by increased production of reactive oxygen species caused by inhibitors of mitochondrial functions. Importantly, mutants defective in lip2, but not lip1, were attenuated for virulence in corn seedlings. Finally, a comparative analysis of fatty acid and cardiolipin profiles in the wild-type strain and a lip2 mutant revealed differences consistent with a protective role for Lip2 in maintaining lipid homeostasis and mitochondrial health during proliferation in the hostile host environment.


Assuntos
Proteínas Fúngicas/metabolismo , Estresse Oxidativo , Fosfolipases/metabolismo , Ustilago/enzimologia , Ustilago/patogenicidade , Cardiolipinas/metabolismo , Respiração Celular , Proteínas Fúngicas/genética , Deleção de Genes , Genoma Fúngico , Haploidia , Mutação/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ustilago/citologia , Ustilago/genética , Virulência/genética
17.
Plant Physiol ; 171(2): 960-73, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27208312

RESUMO

ECERIFERUM7 (CER7)/AtRRP45B core subunit of the exosome, the main cellular 3'-to-5' exoribonuclease, is a positive regulator of cuticular wax biosynthesis in Arabidopsis (Arabidopsis thaliana) inflorescence stems. CER7-dependent exosome activity determines stem wax load by controlling transcript levels of the wax-related gene CER3 Characterization of the second-site suppressors of the cer7 mutant revealed that small interfering RNAs (siRNAs) are direct effectors of CER3 expression. To explore the relationship between the exosome and posttranscriptional gene silencing (PTGS) in regulating CER3 transcript levels, we investigated two additional suppressor mutants, wax restorer1 (war1) and war7. We show that WAR1 and WAR7 encode Arabidopsis SUPERKILLER3 (AtSKI3) and AtSKI2, respectively, components of the SKI complex that associates with the exosome during cytoplasmic 3'-to-5' RNA degradation, and that CER7-dependent regulation of wax biosynthesis also requires participation of AtSKI8. Our study further reveals that it is the impairment of the exosome-mediated 3'-5' decay of CER3 transcript in the cer7 mutant that triggers extensive production of siRNAs and efficient PTGS of CER3. This identifies PTGS as a general mechanism for eliminating highly abundant endogenous transcripts that is activated when 3'-to-5' mRNA turnover by the exosome is disrupted. Diminished efficiency of PTGS in ski mutants compared with cer7, as evidenced by lower accumulation of CER3-related siRNAs, suggests that reduced amounts of CER3 transcript are available for siRNA synthesis, possibly because CER3 mRNA that does not interact with SKI is degraded by 5'-to-3' XRN4 exoribonuclease.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Regulação da Expressão Gênica de Plantas , RNA Helicases/metabolismo , Interferência de RNA , Ceras/metabolismo , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Carbono-Carbono Liases , Exorribonucleases/genética , Exorribonucleases/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Inflorescência/citologia , Inflorescência/genética , Inflorescência/crescimento & desenvolvimento , Inflorescência/metabolismo , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenótipo , Caules de Planta/citologia , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , RNA Helicases/genética , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , RNA Interferente Pequeno
18.
Plant Physiol ; 167(3): 682-92, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25596184

RESUMO

The extension of very-long-chain fatty acids (VLCFAs) for the synthesis of specialized apoplastic lipids requires unique biochemical machinery. Condensing enzymes catalyze the first reaction in fatty acid elongation and determine the chain length of fatty acids accepted and produced by the fatty acid elongation complex. Although necessary for the elongation of all VLCFAs, known condensing enzymes cannot efficiently synthesize VLCFAs longer than 28 carbons, despite the prevalence of C28 to C34 acyl lipids in cuticular wax and the pollen coat. The eceriferum2 (cer2) mutant of Arabidopsis (Arabidopsis thaliana) was previously shown to have a specific deficiency in cuticular waxes longer than 28 carbons, and heterologous expression of CER2 in yeast (Saccharomyces cerevisiae) demonstrated that it can modify the acyl chain length produced by a condensing enzyme from 28 to 30 carbon atoms. Here, we report the physiological functions and biochemical specificities of the CER2 homologs CER2-LIKE1 and CER2-LIKE2 by mutant analysis and heterologous expression in yeast. We demonstrate that all three CER2-LIKEs function with the same small subset of condensing enzymes, and that they have different effects on the substrate specificity of the same condensing enzyme. Finally, we show that the changes in acyl chain length caused by each CER2-LIKE protein are of substantial importance for cuticle formation and pollen coat function.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Graxos/metabolismo , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica de Plantas , Metabolômica , Especificidade de Órgãos/genética , Fenótipo , Epiderme Vegetal/metabolismo , Infertilidade das Plantas , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas , Reprodução/genética , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , Ceras/metabolismo
19.
Plant Physiol ; 167(2): 323-36, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25502190

RESUMO

The primary aerial surfaces of land plants are covered with a cuticle, a protective layer composed of the cutin polyester matrix and cuticular waxes. Previously, we discovered a unique mechanism of regulating cuticular wax biosynthesis during Arabidopsis (Arabidopsis thaliana) stem elongation that involves ECERIFERUM7 (CER7), a core subunit of the exosome. Because loss-of-function mutations in CER7 result in reduced expression of the wax biosynthetic gene CER3, we proposed that CER7 is involved in degrading a messenger RNA encoding a CER3 repressor. To identify this putative repressor, we performed a cer7 suppressor screen that resulted in the isolation of the posttranscriptional gene-silencing components RNA-DEPENDENT RNA POLYMERASE1 and SUPPRESSOR OF GENE SILENCING3, indicating that small RNAs regulate CER3 expression. To establish the identity of the effector RNA species and determine whether these RNAs control CER3 transcript levels directly, we cloned additional genes identified in our suppressor screen and performed next-generation sequencing of small RNA populations that differentially accumulate in the cer7 mutant in comparison with the wild type. Our results demonstrate that the trans-acting small interfering RNA class of small RNAs are the effector molecules involved in direct silencing of CER3 and that the expression of five additional genes (EARLY RESPONSE TO DEHYDRATION14, AUXIN RESISTANT1, a translation initiation factor SUI1 family protein, and two genes of unknown function) is controlled by both CER7 and trans-acting small interfering RNAs.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Exossomos/metabolismo , Inflorescência/crescimento & desenvolvimento , Caules de Planta/crescimento & desenvolvimento , RNA Interferente Pequeno/metabolismo , Ceras/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Inflorescência/metabolismo , Mutação , Fenótipo , Epiderme Vegetal/metabolismo , Caules de Planta/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA
20.
Plant Sci ; 210: 93-107, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23849117

RESUMO

Very-long-chain fatty acids (VLCFAs) are essential molecules produced by all plant cells, and are components or precursors of numerous specialized metabolites synthesized in specific cell types. VLCFAs are elongated by an endoplasmic reticulum-localized fatty acid elongation complex of four core enzymes, which sequentially add two carbon units to a growing acyl chain. Identification and characterization of these enzymes in Arabidopsis thaliana has revealed that three of the four enzymes act as generalists, contributing to all metabolic pathways that require VLCFAs. A fourth component, the condensing enzyme, provides substrate specificity and determines the amount of product synthesized by the entire complex. Land plants have two families of condensing enzymes, FATTY ACID ELONGATION 1 (FAE1)-type ketoacyl-CoA synthases (KCSs) and ELONGATION DEFECTIVE-LIKEs (ELO-LIKEs). Our current knowledge of the specific roles of different condensing enzymes is incomplete, as is our understanding of the biological function of a recently characterized family of proteins, CER2-LIKEs, which contribute to condensing enzyme function. More broadly, the stoichiometry and quaternary structure of the fatty acid elongase complex remains poorly understood, and specific phylogenetic and biochemical questions persist for each component of the complex. Investigation of VLCFA elongation in different organisms, structural biochemistry, and cell biology approaches stand to greatly benefit this field of plant biology.


Assuntos
Arabidopsis/enzimologia , Embriófitas/enzimologia , Ácidos Graxos/metabolismo , Proteínas de Plantas/metabolismo , Acetiltransferases/química , Acetiltransferases/genética , Acetiltransferases/metabolismo , Arabidopsis/genética , Embriófitas/genética , Retículo Endoplasmático/metabolismo , Elongases de Ácidos Graxos , Modelos Moleculares , Complexos Multienzimáticos , Proteínas de Plantas/química , Proteínas de Plantas/genética , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...